Effect of Cr on the corrosion resistance of Cu–6Ni–4Sn alloys

W.S. Jeona, C.C. Shura, J.G. Kima,*, S.Z. Hanb, Y.S. Kimc

a Department of Advance Materials Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
b Material Engineering Department, KIMM, Changwon 641-010, Republic of Korea
c School of Advanced Materials Engineering, Andong National University, Andong, Republic of Korea

Received 25 June 2006; received in revised form 14 January 2007; accepted 21 January 2007
Available online 2 February 2007

Abstract

The corrosion characteristics of Cu–6% Ni–4% Sn–x% Cr alloys in an acid-chloride solution (0.1 M H\textsubscript{2}SO\textsubscript{4} + 0.0056 M NaCl) at pH 1.2, were studied as a function of the chromium content. Three kinds of Cu–6% Ni–4% Sn–x% Cr alloys were prepared by melting and casting, followed by thermomechanical treatments. The corrosion behavior of the Cu–6% Ni–4% Sn–x% Cr alloys was investigated using electrochemical corrosion test and surface analyses (optical microscopy, electron probe microanalysis and scanning electron microscopy). The addition of Cr was found to prevent the localized corrosion behavior, which is caused by the decreased Sn-rich precipitates in Cu–6% Ni–4% Sn–x% Cr alloys. These precipitates induced galvanic corrosion due to the difference of the chemical composition.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Cu–Ni–Sn alloy; Acid-chloride solution; Localized corrosion; Sn-rich precipitate; Galvanic effect

1. Introduction

Cu–Be alloys have been used for various applications in the electronics industry. In particular, these alloys exhibit high strength, elasticity and corrosion resistance, which makes them ideal for use as high performance connector materials in electronics applications\cite{1}. However, they are harmful to the health, because beryllium oxide is generated during the melting process.

Cu–Ni–Sn alloys, which are made by adding Ni to Cu–Sn alloys, have good castability, strength, corrosion resistance and weldability. Recently, these alloy systems have been regarded as possible substitutes for Cu–Be alloys\cite{2–6}. Traditionally, the addition of a small quantity of Zr to Cu alloys is considered to give rise to an improvement in their thermal resistance, conductivity and corrosion resistance. Also, it was reported that the addition of small amounts of Cr has similar effects\cite{7}.

The purpose of this study is to investigate the effect of chromium on the electrochemical characteristics of Cu–6Ni–4Sn alloys, in order to determine if it can improve the corrosion resistance in applications involving electronic materials.

2. Experimental

The alloys studied herein, viz. Cu–6Ni–4Sn–0% Cr, Cu–6Ni–4Sn–0.1% Cr and Cu–6Ni–4Sn–0.3% Cr, were prepared by melting and casting from commercial pure elements. The surface of each specimen was wet-polished with 600 grit SiC paper and degreased with methanol prior to the experiment. The electrical contact, copper was adhered to each specimen, after first being mounted in cured epoxy resin. To prevent crevice corrosion between the epoxy and specimen, the interface was sealed with silicon, leaving an exposed area of Ø10.4 mm × 150 mm on the material surface for the electrochemical test. After etching with 60 ml H\textsubscript{2}O\textsubscript{2} + 25 ml H\textsubscript{2}O\textsubscript{2} + 15 ml H\textsubscript{2}O\textsubscript{2}, the microstructures were observed. Also, SEM investigations were performed to the corroded surfaces of the tested specimens.

Potentiodynamic polarization tests were performed to evaluate the overall corrosion behavior. The electrochemical polarization of the sample was accomplished with an EG&G Model 273A potentiostat. All potentials were measured against a saturated calomel electrode (SCE). For each combination of material and electrolyte, the corrosion sample was allowed to stabilize in 0.1 M H\textsubscript{2}SO\textsubscript{4} + 0.0056 M NaCl solution (pH 1.2) which was aerated under ambient conditions, until the potential change was <1 mV/min. This potential was then taken as the open-circuit potential (OCP). To insure the reproducibility of the results, at least three replicate experiments were carried out.

3. Results and discussion

Fig. 1(a)–(c) shows the microstructures of the samples containing 0, 0.1, and 0.3% of Cr, respectively, which show that deformation bands are developed by cold working\cite{8}.
In Fig. 1(a), precipitates can be seen in the grain boundary. In the case of Fig. 1(c), as the Cr concentration was increased, less precipitates were formed. These precipitates were principally composed of Sn (>80%) [9], which induced galvanic corrosion due to the difference of the chemical composition.

Fig. 2 shows the results of the EDS analysis for the polished sample surface. The sample without Cr was observed to have Sn-rich precipitation. As the concentration of Cr was increased, the precipitates were distributed uniformly. Fig. 3 shows the potentiodynamic polarization curves of Cu–6Ni–4Sn alloys. All of the samples showed anodic dissolution behav-

Fig. 3. Potentiodynamic polarization curves of Cu–6Ni–4Sn alloys.
ior, i.e., anodic current density increased with increasing potential.

The corrosion current density can be measured by the Tafel extrapolation method of the polarization curves and can yield a corrosion rate, based on Faraday’s law [10]:

\[
\text{corrosion rate (mpy)} = \frac{0.13 \cdot i_{\text{corr}} \text{ (\(\mu A/cm^2\))} \times EW \text{ (g/cm}^3)}{\text{density (g/cm}^3)}
\]

(1)

where 0.13 is the metric and time conversion factor and EW is the equivalent weight in grams.

As the content of Cr was increased, both the corrosion current density \(i_{\text{corr}}\) and the polarization resistance value \(R_p\) increased. The results of the potentiodynamic test in Table 1 showed that the corrosion rates of Cu–6Ni–4Sn alloys containing 0, 0.1, and 0.3% Cr were 2.31, 1.94 and 1.33 mpy, respectively, which indicates that when the amount of Cr is increased, the corrosion rate decreases. Fig. 4 shows the surface condition after the potentiodynamic test. In Fig. 4(a), localized corrosion was

<table>
<thead>
<tr>
<th>Specimen</th>
<th>(E_{\text{corr}}) (mV)</th>
<th>(i_{\text{corr}}) ((\mu A/cm^2))</th>
<th>(\beta_a) (V/decade)</th>
<th>(\beta_c) (V/decade)</th>
<th>Corrosion rate (mpy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu–6Ni–4Sn</td>
<td>−43.41</td>
<td>4.969</td>
<td>0.05847</td>
<td>0.3288</td>
<td>2.31</td>
</tr>
<tr>
<td>Cu–6Ni–4Sn–0.1Cr</td>
<td>−66.18</td>
<td>4.168</td>
<td>0.05863</td>
<td>0.2452</td>
<td>1.94</td>
</tr>
<tr>
<td>Cu–6Ni–4Sn–0.3Cr</td>
<td>−57.78</td>
<td>2.851</td>
<td>0.0518</td>
<td>0.2081</td>
<td>1.33</td>
</tr>
</tbody>
</table>
observed around the precipitate while in Figs. 4(b) and (c), the oxide scales were observed on the surface.

Cr is known to react with Sn, resulting in various compounds such as CrSn, Cr$_3$Sn$_2$, Cr$_5$Sn$_3$ and Cr$_2$Sn. Accordingly, the addition of Cr decreases the inverse segregation of Sn in Cu–Sn alloy [11,12]. Therefore, less segregation occurs in the 0.3%Cr sample causing it to have good corrosion properties.

Fig. 5 shows the SEM images of the etched sample surface depending on the Cr content. In Fig. 5(a), cavities were observed over the entire surface. Precipitation was more pronounced as Cr content was lowered. Fig. 6 shows the EDS mapping results for the pitted region. The Sn-rich precipitates were formed there. If segregations or impurities are present in the material, then the localized corrosion would be accelerated by the formation of a galvanic couple with the base metal. Consequently, by adding
Fig. 5. (Continued).

Fig. 6. SEM micrograph and EDS mapping analyses after corroded surfaces: (a) Cu; (b) Ni; (c) Sn.
Cr to Cu–6Ni–4Sn alloy, the amount of both the Sn-rich phase and impurities is decreased, thereby decreasing the localized corrosion.

4. Conclusions

According to the potentiodynamic test, the corrosion current density was decreased and the polarization resistance was increased by the addition of Cr. Based on the SEM results, it was concluded that the more the content of Cr is added, the lower the amount of precipitate that is formed. These precipitates had detrimental effects on the corrosion resistance of Cu–6Ni–4Sn alloys.

Acknowledgement

This research was supported by a grant (4-2-1) from the Sustainable Water Resources Research Center of the 21st Century Frontier Program.

References